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Abstract. Out-of-distribution (OOD) detection is essential to improve
the reliability of machine learning models by detecting samples that do
not belong to the training distribution. Detecting OOD samples effec-
tively in certain tasks can pose a challenge because of the substantial
heterogeneity within the in-distribution (ID), and the high structural
similarity between ID and OOD classes. For instance, when detecting
heart views in fetal ultrasound videos there is a high structural similarity
between the heart and other anatomies such as the abdomen, and large
in-distribution variance as a heart has 5 distinct views and structural
variations within each view. To detect OOD samples in this context,
the resulting model should generalise to the intra-anatomy variations
while rejecting similar OOD samples. In this paper, we introduce dual-
conditioned diffusion models (DCDM) where we condition the model on
in-distribution class information and latent features of the input image
for reconstruction-based OOD detection. This constrains the generative
manifold of the model to generate images structurally and semantically
similar to those within the in-distribution. The proposed model out-
performs reference methods with a 12% improvement in accuracy, 22%
higher precision, and an 8% better F1 score.

1 Introduction

Existing out-of-distribution (OOD) detection methods work well when the in-
distribution (ID) classes have low heterogeneity (low variance) but fail when
in-distribution classes have high heterogeneity [23] or high spatial similarity
between ID and OOD classes [9]. Fetal ultrasound (US) anatomy detection is
one such application where both the challenges co-exist.

In this paper, we propose a Dual-Conditioned Diffusion Model (DCDM) to
detect OOD samples when in-distribution data has high variance and test the
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performance by detecting heart views in fetal US videos as an example appli-
cation. Specifically, an Ultrasound (US) typically comprises 13 anatomies and
their views. However, analysis models are usually developed for anatomy-specific
tasks. Hence, to separate heart views from other 12 anatomies (head, abdomen,
femur etc.) we develop an OOD detection algorithm. Our in-distribution data
comprises five structurally different heart views captured across different cardiac
cycles of a beating heart during obstetric US scanning. We develop a diffusion-
based model for reconstruction-based OOD detection, which extends [14] with
a novel dual conditioning mechanism that alleviates the influence of high inter-
and intra-class variation within different classes by leveraging in-distribution
class conditioning (IDCC) and latent image feature conditioning (LIFC). These
conditioning mechanisms allow our model to generate images similar to the input
image for in-distribution data. The primary contributions of our paper are sum-
marized as follows: 1) We introduce a novel conditioned diffusion model for OOD
detection and demonstrate that the dual conditioning mechanism is effective in
tackling challenging scenarios where in-distribution data comprises multiple het-
erogeneous classes and there is a high spatial similarity between ID and OOD
classes. 2) Two original conditions are proposed for the diffusion model, which
are in-distribution class conditioning (IDCC) and latent image feature condi-
tioning (LIFC). IDCC is proposed to handle high inter-class variance within
in-distribution classes and high spatial similarity between ID and OOD classes.
LIFC is introduced to counter the intra-class variance within each class. 3) We
demonstrate in our experiments that DCDM can detect and separate heart views
from other anatomies in fetal ultrasound videos without needing any labelled
data for OOD classes. Extensive experiments and ablations demonstrate supe-
rior performance over existing OOD detection methods. Our approach is not
fetal ultrasound specific and could be applied to other OOD applications.

2 Related Work

OOD detection [31] involves identifying samples that do not belong to the train-
ing distribution. Such models can be categorized into: (a) unsupervised OOD
detection [23] and (b) supervised OOD detection. [5,11,34]. Unsupervised OOD
detection methods can again be divided into two main categories: (i) likelihood-
based approaches [12,21,30], and (ii) reconstruction-based [3,25,33]. Likelihood-
based approaches suffer from several issues, including assigning higher likelihood
to OOD samples [4,19], susceptibility to adversarial attacks [8], and calibration
issues [28]. Current reconstruction-based approaches are sensitive to dimensions
of the bottleneck layer and require rigorous tuning specific to the dataset and
task [10]. Additionally, models trained using a generator-discriminator architec-
ture and optimizing adversarial losses can be highly unstable and challenging
to train [1,2]. Finally, reconstruction-based methods often rely on highly com-
pressed latent representations, which can lead to loss of important low-level
detail. This can be problematic when discriminating between classes with high
spatial similarity. Recently, diffusion models have been introduced to address
these limitations on tasks such as image synthesis [6], and OOD detection [10].
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Denoising Diffusion Probabilistic Models (DDPMs) [14] are generative mod-
els that work by gradually adding noise to an input image through a forward
diffusion process followed by gradually removing noise using a trained neural net-
work in the backward diffusion process [32]. To guide the generative process of a
diffusion model (DM), previous work [18,22,24] condition the DDPMs on task-
specific conditioning. In image-to-image translation tasks like super-resolution,
colourization, etc., previous papers [24] condition the model by concatenating a
resized or grayscale version of the input image to the noised image. This con-
catenation is unsuitable for reconstruction-based OOD detection as the model
will generate similar images for ID and OOD samples. In the context of OOD
detection using DMs, previous works [10] have trained unconditional DDPMs
and, during inference, sampled using a Pseudo Linear Multi Step (PLMS) [16]
sampler for varying noise levels. However, their approach generates 5500 sam-
ples to detect OOD samples for each input image which is time-consuming and
impractical for settings where shorter inference times are needed. AnoDDPM [29]
utilises simplex noise rather than Gaussian noise to corrupt the image (t=250
rather than t=1000) for anomaly detection. However, this approach requires data
specific tuning, and is outperformed by [10].

Fig. 1. DCDM architecture where (a) the input image x0 is mapped to the latent vector
z0 using a pretrained encoder E and forward diffusion is applied, (b) the backward
diffusion process denoises the latent vector zt and the final denoised latent vector z0
is mapped to pixel space by the decoder D (c) the dual-conditioning mechanism. We
obtain fimg by passing the input image x0 through the encoder E . fcls is obtained
using the true label during training or predicted class label during testing.
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3 Methods

3.1 Dual Conditioned Diffusion Models

Diffusion models are generative models that rely on two Markov processes known
as forward and backward diffusion [14]. To improve efficiency during training
and inference, forward and backward diffusion is applied to the latent space [22].
Autoencoder (AE = E + D) is pretrained separately on ID heart data and
can successfully reconstruct the input heart images (SSIM=0.956). The latent
variable z0 is obtained by passing an input image x0 through a pretrained encoder
E . Given the latent vector z0 and a fixed variance schedule [14] {βt ∈ (0, 1)}T

t=1,
the forward diffusion process, defined by Eq. 1, gradually adds Gaussian noise
to z0 to give a noised latent vector zt where αt = 1 − βt and ᾱt =

∏t
i=1 αi:

q(zt|z0) = N (zt;
√

ᾱtz0, (1 − ᾱt)I) (1)

In backward diffusion, we aim to reverse the forward diffusion process and predict
zt−1 given zt. To predict (zt−1|zt), we train a denoising U-Net [14] denoted as
εθ (zt, t, d0) that takes the current timestep t, noised latent vector zt and the dual
conditioning embedding vector d0 as input and predicts the noise at timestep t
as shown in Eq. 2.

zt−1 = N (zt−1;
1√
αt

(
zt − 1 − αt√

1 − ᾱt
εθ(zt, t, d0)

)
, (1 − ᾱt)I) (2)

The dual embedding vector d0 is obtained by combining IDCC (fcls) and LIFC
(fimg) vectors, which we explain in Sect. 3.2. The output zt−1 is again input to
εθ. This process is repeated until z0 is obtained.

The final model optimisation objective is given by Eq. 3 where ε is the original
noise added during the forward diffusion process.

LDCDM := EE(x),ε∼N (0,1),t

[
‖ε − εθ (zt, t, d0)‖22

]
(3)

Once we obtain z0 from the backward diffusion process, it is passed on to the
decoder D and mapped back to the pixel space to give generated image x′

0.

3.2 Dual Conditioning Mechanism

Image features and in-distribution class information are utilised in our proposed
dual conditioning mechanism. This guides the DCDM to generate images that
are spatially and semantically similar to the input image for in-distribution sam-
ples and dissimilar for OOD samples.

Latent Image Feature Conditioning (LIFC): The image conditioning dic-
tates the desired appearance of generated images in terms of shape and texture.
In our model, we use the features extracted by a pretrained encoder for con-
ditioning. Empirically, we use the same encoder E as our feature extractor to
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obtain latent feature vector z0 as shown in Fig. 1. Specifically, the input image of
dimension 224×224×3 is passed through the encoder E and a feature map with
the size of 7 × 7 × 128 is obtained which is followed by global average pooling
(GAP) resulting in a feature vector (fimg) with dimension 128.

In-Distribution Class Conditioning (IDCC): Given an in-distribution
dataset comprising n heterogeneous classes, conditioning the model only on
image-level features is insufficient. Therefore we introduce an in-distribution
class conditioning (IDCC) that informs the DCDM of the class of the input
image and enables it to generate samples belonging to the same class for ID. A
label encoder generates a unique class conditional embedding (fcls) of dimension
128 for each class label. The class label is assigned based on the ground truth
label during the training phase and to the classifier’s prediction during inference,
as depicted in Fig. 1. In practice, we train a CNN classifier, freeze its weight and
use it as our in-distribution classifier (CFR), as discussed in Sect. 3.3.

Cross Attention Guidance: To integrate the dual-conditioning guidance into
the diffusion model, we use a cross-attention [27] mechanism inside the denoising
U-Net rather than just concatenation [24] as it is more effective [13,17,20] and
allows condition diffusion models on various input modalities [22]. Our LIFC and
IDCC are first concatenated to give a feature vector with a dimension of 256.
This acts as a side input to each UNet block. The features from the UNet block
and the conditional features are fused by cross-attention and serve as input to
the following UNet block as shown in Fig. 1. For more details,regarding cross-
attention block refer to Rombach et al. [22].

3.3 In-Distribution Classifier

The in-distribution classifier (CFR) serves two main functions. First, it provides
labels for the class conditioning during inference; second, it is utilized as a feature
extractor for calculating the OOD score.

Inference Class Guidance. IDCC requires in-distribution class information
to generate the class conditional embedding. However, class information is only
available during training. To obtain class information during inference, we sep-
arately train a ConvNext CNN based classifier (accuracy = 88%) on the in-
distribution data and use its predictions as the class information. During infer-
ence, the input image x0 is passed through the classifier, and the predicted
label is used to generate the class embedding by feeding to the label encoder
as shown in Fig. 1. Moreover, as the classifier is only trained on in-distribution
data, it classifies an OOD sample to an in-distribution class. The classifier’s pre-
diction is utilised by the DCDM and it tries to generate an image belonging
to in-distribution class for the OOD samples. This reduces the structural and
semantic similarity between the input and the generated image, as demonstrated
by our qualitative results (Fig. 2).
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Feature-Based OOD Detection To evaluate the performance of the DCDM,
the cosine similarity between features of the input image x0 and the generated
image x′

0 from the in-distribution classifier is calculated and is referred as an
OOD score where f0 and f ′

0 are the features of x0 and x′
0, respectively:

OOD score = sim(f0, f ′
0) =

f0 · f ′
0

‖f0‖2 ‖f ′
0‖2

, (4)

An input image x0 is classified as in-distribution (ID) or OOD based on Eq. 5
where τ is a pre-defined threshold and ypred is the prediction of our feature-based
OOD detection algorithm.

ypred =

{
0(ID) if OOD score > τ

1 (OOD) otherwise
(5)

4 Experiments and Results

Dataset and Implementation. For our experiments, we utilized a fetal ultra-
sound dataset of 359 subject videos that were collected as part of the PULSE
project [7]. The in-distribution dataset consisted of 5 standard heart views (3VT,
3VV, LVOT, RVOT, and 4CH), while the out-of-distribution dataset comprised
of three non-heart anatomies - fetal head, abdomen, and femur. The original
images were of size 1008 × 784 pixels and were resized to 224 × 224 pixels.

To train the models, we randomly sampled 5000 fetal heart images and used
500 images for evaluating image generation performance. To test the performance
of our final model and compare it with other methods, we used an held-out
dataset of 7471 images, comprising 4309 images of different heart views and
3162 images (about 1000 for each anatomy) of out-of-distribution classes. Further
details about the dataset are given in Supp. Fig. 2 and 3.

All models were trained using PyTorch version 1.12 with a Tesla V100 32
GB GPU. During training, we used T=1000 for noising the input image and a
linearly increasing noise schedule that varied from 0.0015 to 0.0195. To generate
samples from our trained model, we used DDIM [26] sampling with T=100. All
baseline models were trained and evaluated using the original implementation.

4.1 Results

We evaluated the performance of the dual-conditioned diffusion models
(DCDMs) for OOD detection by comparing them with two current state-of-
the-art unsupervised reconstruction-based approaches and one likelihood-based
approach. The first baseline is Deep-MCDD [15], a likelihood-based OOD detec-
tion method that proposes a Gaussian discriminant-based objective to learn
class conditional distributions. The second baseline is ALOCC [23] a GAN-based
model that uses the confidence of the discriminator on reconstructed samples to
detect OOD samples. The third baseline is the method of Graham et al. [10],
where they use DDPM [14] to generate multiple images at varying noise levels
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Table 1. Quantitative comparison of our model (DCDM) with reference methods

Method AUC(%) F1-Score(%) Accuracy(%) Precision(%)

Deep-MCDD [15] 64.58 66.23 60.41 51.82

ALOCC [23] 57.22 59.34 52.28 45.63

Graham et al. [10] 63.86 63.55 60.15 50.89

DCDM(Ours) 77.60 74.29 77.95 73.34

for each input. They then compute the MSE and LPIPS metrics for each image
compared to the input, convert them to Z-scores, and finally average them to
obtain the OOD score.

Quantitative Results. The performance of the DCDM, along with compar-
isons with the other approaches, are shown in Table 1. The GAN-based method
ALOCC [23] has the lowest AUC of 57.22%, which is improved to 63.86% by
the method of Graham et al. and further improved to 64.58% by likelihood-
based Deep-MCDD. DCDM outperforms all the reference methods by 20%, 14%
and 13%, respectively and has an AUC of 77.60%. High precision is essential for
OOD detection as this can reduce false positives and increase trust in the model.
DCDM exhibits a precision that is 22% higher than the reference methods while
still having an 8% improvement in F1-Score.

Qualitative Results. Qualitative results are shown in Fig. 2. Visual compar-
isons show ALOCC generates images structurally similar to input images for in-
distribution and OOD samples. This makes it harder for the ALOCC model to
detect OOD samples. The model of Graham et al. generates any random heart
view for a given image as a DDPM is unconditional, and our in-distribution
data contains multiple heart views. For example, given a 4CH view as input, the
model generates an entirely different heart view. However, unlike ALOCC, the
Graham et al. model generates heart views for OOD samples, improving OOD
detection performance. DCDM generates images with high spatial similarity to
the input image and belonging to the same heart view for ID samples while
structurally diverse heart views for OOD samples. In Fig. 2 (c) for OOD sample,
even-though the confidence is high (0.68), the gap between ID and OOD classes
is wide enough to separate the two.Additional qualitative results can be observed
in Supp. Fig. 4.

4.2 Ablation Study

Ablation experiments were performed to study the impact of various condi-
tioning mechanisms on the model performance both qualitatively and quanti-
tatively. When analyzed quantitatively, as shown in Table 2, the unconditional
model has the lowest AUC of 69.61%. Incorporating the IDCC guidance or LIFC
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Fig. 2. Qualitative comparison of our method with (a) ALOCC generates similar
images to the input for ID and OOD samples (b) Graham et al. generates any random
heart view for a given input image (c) Our model generates images that are similar
to the input image for ID and dissimilar for OOD samples. Classes predicted by CFR
and the OOD score (τ = 0.73) are mentioned in brackets.

Table 2. Ablation study of different conditioning mechanisms of DCDM.

Method Accuracy (%) Precision (%) AUC (%)

Unconditional 68.16 58.44 69.61

In-Distribution Class Conditioning 74.39 66.12 75.27

Latent Image Feature Conditioning 77.02 70.02 77.40

Dual Conditioning 77.95 73.34 77.60

Fig. 3. Qualitative ablation study showing the effect of (a) IDCC, (b) LIFC and, (c)
DC on generative results of DM. Brackets in IDCC, DC show labels predicted by CFR.
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separately, improves performance with an AUC of 75.27% and 77.40%, respec-
tively. The best results are achieved when both mechanisms are used (DCDM),
resulting in an 11% improvement in the AUC score relative to the unconditional
model. Although there is a small margin of performance improvement between
the combined model (DCDM) and the LIFC model in terms of AUC, the pre-
cision improves by 3%, demonstrating the combined model is more precise and
hence the best model for OOD detection.

As shown in Fig. 3, the unconditional diffusion model generates a random
heart view for a given input for both in-distribution and OOD samples. The
IDCC guides the model to generate a heart view according to the in-distribution
classifier (CFR) prediction which leads to the generation of similar samples for
in-distribution input while dissimilar samples for OOD input. On the other hand,
LIFC generates an image with similar spatial information. However, heart views
are still generated for OOD samples as the model was only trained on them.
When dual-conditioning (DC) is used, the model generates images that are closer
aligned to the input image for in-distribution input and high-fidelity heart views
for OOD than those generated by a model conditioned on either IDCC or LIFC
alone. Supp. Fig. 1 presents further qualitative ablations.

5 Conclusion

We introduce novel dual-conditioned diffusion model for OOD detection in fetal
ultrasound videos and demonstrate how the proposed dual-conditioning mech-
anisms can manipulate the generative space of a diffusion model. Specifically,
we show how our dual-conditioning mechanism can tackle scenarios where the
in-distribution data has high inter- (using IDCC) and intra- (using LIFC) class
variations and guide a diffusion model to generate similar images to the input
for in-distribution input and dissimilar images for OOD input images. Our app-
roach does not require labelled data for OOD classes and is especially applicable
to challenging scenarios where the in-distribution data comprises more than one
class and there is high similarity between the in-distribution and OOD classes.
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11. Guénais, T., Vamvourellis, D., Yacoby, Y., Doshi-Velez, F., Pan, W.:
Bacoun: Bayesian classifers with out-of-distribution uncertainty. arXiv preprint
arXiv:2007.06096 (2020)

12. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-
distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)

13. Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or,
D.: Prompt-to-prompt image editing with cross attention control. arXiv preprint
arXiv:2208.01626 (2022)

14. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural.
Inf. Process. Syst. 33, 6840–6851 (2020)

15. Lee, D., Yu, S., Yu, H.: Multi-class data description for out-of-distribution detec-
tion. In: Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1362–1370 (2020)

16. Liu, L., Ren, Y., Lin, Z., Zhao, Z.: Pseudo numerical methods for diffusion models
on manifolds. arXiv preprint arXiv:2202.09778 (2022)

17. Margatina, K., Baziotis, C., Potamianos, A.: Attention-based conditioning meth-
ods for external knowledge integration. arXiv preprint arXiv:1906.03674 (2019)

18. Meng, C., et al.: Sdedit: guided image synthesis and editing with stochastic differ-
ential equations. In: International Conference on Learning Representations (2021)

19. Nalisnick, E., Matsukawa, A., Teh, Y.W., Gorur, D., Lakshminarayanan, B.:
Do deep generative models know what they don’t know? arXiv preprint
arXiv:1810.09136 (2018)

20. Rebain, D., Matthews, M.J., Yi, K.M., Sharma, G., Lagun, D., Tagliasacchi,
A.: Attention beats concatenation for conditioning neural fields. arXiv preprint
arXiv:2209.10684 (2022)

21. Ren, J., et al.: Likelihood ratios for out-of-distribution detection. Adv. Neural
Inform. Process. Syst. 32 (2019)

22. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

23. Sabokrou, M., Khalooei, M., Fathy, M., Adeli, E.: Adversarially learned one-class
classifier for novelty detection. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 3379–3388 (2018)

24. Saharia, C., et al.: Palette: Image-to-image diffusion models. In: ACM SIGGRAPH
2022 Conference Proceedings, pp. 1–10 (2022)

http://arxiv.org/abs/1810.01392
http://arxiv.org/abs/1802.04865
http://arxiv.org/abs/2201.07012
http://arxiv.org/abs/2211.07740
http://arxiv.org/abs/2007.06096
http://arxiv.org/abs/1610.02136
http://arxiv.org/abs/2208.01626
http://arxiv.org/abs/2202.09778
http://arxiv.org/abs/1906.03674
http://arxiv.org/abs/1810.09136
http://arxiv.org/abs/2209.10684


226 D. Mishra et al.
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